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ABSTRACT
It is fundamental to measure model complexity of deep neural

networks. The existing literature on model complexity mainly fo-

cuses on neural networks with piecewise linear activation functions.

Model complexity of neural networks with general curve activation

functions remains an open problem. To tackle the challenge, in

this paper, we first propose linear approximation neural network
(LANN for short), a piecewise linear framework to approximate a

given deep model with curve activation function. LANN constructs

individual piecewise linear approximation for the activation func-

tion of each neuron, and minimizes the number of linear regions

to satisfy a required approximation degree. Then, we analyze the

upper bound of the number of linear regions formed by LANNs, and

derive the complexity measure based on the upper bound. To exam-

ine the usefulness of the complexity measure, we experimentally

explore the training process of neural networks and detect overfit-

ting. Our results demonstrate that the occurrence of overfitting is

positively correlated with the increase of model complexity during

training. We find that the 𝐿1 and 𝐿2 regularizations suppress the

increase of model complexity. Finally, we propose two approaches

to prevent overfitting by directly constraining model complexity,

namely neuron pruning and customized 𝐿1 regularization.
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1 INTRODUCTION
Deep neural networks have gained great popularity in tackling

various real-world applications, such as machine translation [35],

speech recognition [5] and computer vision [13]. One major reason

behind the great success is that the classification function of a

deep neural network can be highly nonlinear and express a highly

complicated function [2]. Consequently, a fundamental question

lies in how nonlinear and how complex the function of a deep

neural network is. Model complexity measures [27, 33] address this

question. The recent progress in model complexity measure directly

facilitates the advances of many directions of deep neural networks,

such as model architecture design, model selection, performance

improvement [17], and overfitting detection [16].

The challenges in measuring model complexity are tackled from

different angles. For example, the influences of model structure on

complexity have been investigated, including layer width, network

depth, and layer type. The power of width is discussed and a single

hidden layer network with a finite number of neurons is proved

to be an universal approximator [1, 19]. With the exploration of

deep network structures, some recent studies pay attention to the

effectiveness of deep architectures in increasing model complexity,

known as depth efficiency [2, 6, 11, 25]. The bounds of model com-

plexity of some specific model structures are proposed, from sum-

product networks [8] to piecewise linear neural networks [27, 31].

Model parameters (e.g., weight, bias of layers) also play important

roles in model complexity. For example, 𝑓1 (𝑥) = 𝑎𝑥 + 𝑏 sin(𝑥) may

be considered more complex than 𝑓2 (𝑥) = 𝑐𝑥 + 𝑑 according to their

function forms. However if the parameters of the two functions are

𝑎 = 1, 𝑏 = 0, 𝑐 = 1, and 𝑑 = 0, 𝑓1 and 𝑓2 are then two coincident lines.

This example demonstrates the importance of model parameters

on complexity. Raghu et al. [33] propose a complexity measure

for neural networks with piecewise linear activation functions by

measuring the number of linear regions through a trajectory path

between two instances. Their proposed complexity measure reflects

the effect of model parameters to some degree.

However, the approach of [33] cannot be directly generalized

to neural networks with curve activation functions, such as Sig-

moid [22], Tanh [21]. At the same time, in some specific applications,

curve activation functions are found superior than piecewise linear

activation functions. For example, many financial models use Tanh

rather than ReLU [9]. A series of state-of-the-art studies speed up

and simplify the training of neural networks with curve activation

functions [20]. This motivates our study on model complexity of

deep neural networks with curve activation functions.
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(a) (b)

Figure 1: (a) Two functions behaving similarly on given
points may be very different. (b) Illustration of overfitting.

In this paper, we develop a complexity measure for deep fully-

connected neural networks with curve activation functions. Previ-

ous studies on deep models with piecewise linear activation func-

tions use the number of linear regions to model the nonlinearity

and measure model complexity [27, 29, 31, 33]. To generalize this

idea, we develop a piecewise linear approximation to approach tar-

get deep models with curve activation functions. Then, we measure

the number of linear regions of the approximation as an indicator

of the target model complexity. The piecewise linear approximation

is designed under two desiderata. First, to guarantee the approxi-

mation degree , we require a direct approximation of the function

of the target model rather than simply mimicking the behavior

or performance, such as the mimic learning approach [18]. The

rationale is that two functions having the same behavior on a set of

data points may still be very different, as illustrated in Figure 1(a).

Therefore, approximation using the mimic learning approach [18] is

not enough. Second, to compare the complexity values of different

models, the complexity measure has to be principled. The princi-

ple we follow is to minimize the number of linear regions given

an approximation degree threshold. Under these two desiderata,

the minimum number of linear regions constrained by a certain

approximation degree can be used to reflect the model complexity.

Technically we propose the linear approximation neural network
(LANN for short), a piecewise linear framework to approximate a

target deep model with curve activation functions. A LANN shares

the same layer width, depth and parameters with the target model,

except that it replaces every activation function with a piecewise

linear approximation. An individual piecewise linear function is

designed as the activation function on every neuron to satisfy the

above two desiderata. We analyze the approximation degree of

LANNs with respect to the target model, then devise an algorithm

to build LANNs to minimize the number of linear regions. We

provide an upper bound on the number of linear regions formed by

LANNs, and define the complexity measure using the upper bound.

To demonstrate the usefulness of the complexity measure, we

explore its utility in analyzing the training process of deep models,

especially the problem of overfitting [16]. Overfitting occurs when

a model is more complicated than the ultimately optimal one, and

thus the learned function fits too closely to the training data and fails

to generalize, as illustrated in Figure 1(b). Our results show that the

occurrence of overfitting is positively correlated to the increase of

model complexity. Besides, we observe that regularization methods

for preventing overfitting, such as 𝐿1 and 𝐿2 regularizations [15],

constrain the increase of model complexity. Based on this finding,

we propose two simple yet effective approaches for preventing

overfitting by directly constraining the growth of model complexity.

The rest of the paper is organized as follows. Section 2 reviews

related work. In Section 3 we provide the problem formulation. In

Section 4 we introduce the linear approximation neural network

framework. In Section 5 we develop the complexity measure. In

Section 6 we explore the training process and overfitting in the

view of complexity measure. Section 7 concludes the paper.

2 RELATEDWORK
The studies of model complexity dates back to several decades. In

this section, we review related works of model complexity of neural

networks from two aspects: model structures and parameters.

2.1 Model Structures
Model structures may have strong influence on model complexity,

such as width, layer depth, and layer type.

The power of layer width of shallow neural networks is inves-

tigated [1, 7, 19, 26] decades ago. Hornik et al. [19] propose the

universal approximation theorem, which states that a single layer

feedforward network with a finite number of neurons can approxi-

mate any continuous function under some mild assumptions. Some

later studies [1, 7, 26] further strengthen this theorem. However, al-

though with the universal approximation theorem, the layer width

can be exponentially large. Lu et al. [25] extend the universal ap-

proximation theorem to deep networks with bounded layer width.

Recently, deep models are empirically discovered to be more

effective than a shallow one. A series of studies focus on exploring

the advantages of deep architecture in a theoretical view, which is

called depth efficiency [2, 6, 11, 32]. Those studies show that the

complexity of a deep network can only be matched by a shallow

one with exponentially more nodes. In other words, the function of

deep architecture achieves exponential complexity in depth while

incurs polynomial complexity in layer width.

Some studies bound the model complexity with respect to cer-

tain structures or activation functions [3, 8, 10, 27, 32]. Delalleau

and Bengio [8] study sum-product networks and use the number

of monomials to reflect model complexity. Pascanu et al. [31] and

Montufar et al. [27] investigate fully connected neural networks

with piecewise linear activation functions (e.g. ReLU and Maxout),

and use the number of linear regions as a representation of complex-

ity. However, the studies on model complexity only from structures

are not able to distinguish differences between two models with

similar structures, which are needed for problems such as under-

standing model training.

2.2 Parameters
Besides structures, the value of model parameters, including layer

weight and bias, also play a central role in model complexity mea-

sures. Complexity of models is sensitive to the values of parameters.

Raghu et al. [33] propose a complexity measure for DNNs with

piecewise linear activation functions. They follow the previous

studies on DNNs with piecewise linear activation functions and use

the number of linear regions as a reflection of model complexity [27,

31]. To measure how many linear regions a data manifold is split,

Raghu et al. [33] build a trajectory path from one input instance to
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another, then estimate model complexity by the number of linear

region transitions through the trajectory path. Their trajectory

length measure not only reflects the influences of model structures

onmodel complexity, but also is sensitive tomodel parameters. They

further study Batch Norm [20] using the complexity measure. Later,

Novak et al. [29] generalize the trajectory measure to investigate

the relationship between complexity and generalization of DNNs

with piecewise linear activation functions.

However, the complexity measure using trajectory [33] cannot

be directly generalized to curve activation functions. In this paper,

we propose a complexity measure to DNNs with curve activation

functions by building its piecewise linear approximation. Our pro-

posed measure can reflect the influences of both model structures

and parameters.

3 PROBLEM FORMULATION
A deep (fully connected) neural network (DNN for short) con-

sists of a series of fully connected layers. Each layer includes an

affine transformation and a nonlinear activation function. In classi-

fication tasks, let 𝑓 : R𝑑 → R𝑐 represent a DNN model, where 𝑑 is

the number of features of inputs, and 𝑐 the number of class labels.

For an input instance 𝑥 ∈ R𝑑 , 𝑓 can be written in the form of

𝑓 (𝑥) = 𝑉𝑜ℎ𝐿 (ℎ𝐿−1 (· · · (ℎ1 (𝑥)))) + 𝑏𝑜 (1)

where 𝑉𝑜 and 𝑏𝑜 , respectively, are the weight matrix and the bias

vector of the output layer, 𝑓 (𝑥) ∈ R𝑐 is the output vector corre-

sponding to the 𝑐 class labels, 𝐿 is the number of hidden layers, and

ℎ𝑖 is 𝑖-th hidden layer in the form of

ℎ𝑖 (𝑧) = 𝜙 (𝑉𝑖𝑧 + 𝑏𝑖 ), 𝑖 = 1, . . . , 𝐿 (2)

where𝑉𝑖 and 𝑏𝑖 are the weight matrix and the bias vector of the 𝑖-th

hidden layer, respectively. 𝜙 (·) is the activation function. In this

paper, if 𝑧 is a vector, we use 𝜙 (𝑧) to represent the vector obtained

by separately applying 𝜙 to each element of 𝑧.

The commonly used activation functions can be divided into two

groups according to algebraic properties. First, a piecewise linear
activation function is composed of a finite number of pieces of

affine functions. Some commonly used piecewise linear activation

functions include ReLU [28] and hard Tanh [30]. With a piecewise

linear𝜙 , the DNNmodel 𝑓 is a continuous piecewise linear function.

Second, a curve activation function is a continuous nonlinear

functionwhose geometric shape is a smooth curved line. Commonly

used curve activation functions include Sigmoid [22] and Tanh [21].

With a curvilinear 𝜙 , the DNN model 𝑓 is a curve function.

In this paper, we are interested in fully connected neural net-

works with curve activation functions. We focus on two typical

curve activation functions, Sigmoid [22], Tanh [21]. Our methodol-

ogy can be easily extended to other curve activation functions.

Given a target model, which is a trained fully connected neural

network with curve activation functions, we want to measure the

model complexity. Here, the complexity reflects how nonlinear, or

how curved the function of the network achieves. Our complexity

measure should take both the model structure and the parameters

into consideration. To measure the model complexity, our main idea

is to obtain a piecewise linear approximation of the target model,

then use the number of linear segments of approximation to reflect

the target model complexity. This idea is inspired by the previous

studies on DNNs with piecewise linear activation functions [27, 29,
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(b) Approximation 𝑔2

Figure 2: Example shows piecewise linear approximation
under different approximation principles.

33]. To make our idea of measuring by approximation feasible, the

approximation should satisfy two requirements.

First, the quality/degree of approximation should be guaranteed.
To make the idea of measuring complexity by the nonlinearity of

approximation feasible, a prerequisite is that the approximation

should be highly close to the function of the target model. In this

case, the mimic learning approach [18], which approximates by

learning a student model under the guidance of the target model

outputs, is not suitable, since it learns the behavior of the target

model on a specific dataset and cannot guarantee the generaliz-

ability, as illustrated in Figure 1(a). To ensure the closeness of the

approximation functions to the target models, we propose linear ap-
proximation neural network (LANN). A LANN is an approximation

model that builds piecewise linear approximations to activation

functions in the target model. To make the approximation degree

controllable and flexible, we design an individual approximation

function for the activation function on every neuron separately

according to their status distributions (Section 4.1). Furthermore,

we define a measure of approximation degree in terms of approxi-

mation error and analyze through error propagation (Section 4.2).

Second, the approximation should be constructed in a principled
manner. To understand the rationale of this requirement, consider

an example in Figure 2, where the target model is a curved line (the

solid curve). One approximation 𝑔1 (the red line in Figure 2(a)) is

built using as few linear segments as possible. Another approxima-

tion 𝑔2 (the red line in Figure 2(b)) evenly divides the input domain

into small pieces and then approximates each piece using linear seg-

ments. Both of them can approximate the target model to a required

approximation degree and can reflect the complexity of the target

model. However, we should not use 𝑔1 on some occasions and use

𝑔2 on some other occasions to measure the complexity of the target

model, since they are built following different protocols. To make

the complexity measure comparable, the approximation should be

constructed under a consistent protocol. We suggest constructing

approximations under the protocol of using as few linear segments

as possible (Section 4.3), an thus the minimum number of linear

segments required to satisfy the approximation degree can reflect

the model complexity.

4 LANN ARCHITECTURE
To develop our complexity measure, we propose LANN, a piecewise

linear approximation to the target model. In this section, we first

introduce the architecture of LANN. Then, we discuss the degree of

approximation. Last, we propose the algorithm of building a LANN.
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4.1 Linear Approximation Neural Network
The function of a deep model with piecewise linear activation

functions is piecewise linear, and has a finite number of linear

regions [27]. The number of linear regions of such a model is com-

monly used to assess the nonlinearity of the model, i.e., the com-

plexity [27, 33]. Motivated by this, we develop a piecewise linear

approximation of the target model with curve activation functions,

then use the number of linear regions of the approximation model

as a reflection of the complexity of the target model.

The approximation model we propose is called the linear approx-
imation neural network (LANN).

Definition 1 (Linear Approximation Neural Network).

Given a fully connected neural network 𝑓 : R𝑑 → R𝑐 , a linear
approximation neural network 𝑔 : R𝑑 → R𝑐 is an approximation of 𝑓
in which each activation function 𝜙 (·) in 𝑓 is replaced by a piecewise
linear approximation function ℓ (·).

A LANN shares the same layer depth, width as well as weight

matrix and bias vector as the target model, except that it approxi-

mates every activation function using an individual piecewise linear

function. This brings two advantages. First, designing an individual

approximation function for each neuron makes the approximation

degree of a LANN 𝑔 to the target model 𝑓 flexible and controllable.

Second, the number of subfunctions of neurons is able to reflect the

nonlinearity of the network. These two advantages will be further

discussed in Section 4.2 and Section 5, respectively.

A piecewise linear function ℓ (·) consisting of 𝑘 subfunctions

(linear regions) can be written in the following form.

ℓ (𝑧) =


𝛼1𝑧 + 𝛽1, if 𝜂0 < 𝑧 ≤ 𝜂1
𝛼2𝑧 + 𝛽2, if 𝜂1 < 𝑧 ≤ 𝜂2

.

.

.

𝛼𝑘𝑧 + 𝛽𝑘 , if 𝜂𝑘−1 < 𝑧 ≤ 𝜂𝑘

(3)

where 𝛼𝑖 , 𝛽𝑖 ∈ R are the parameters of the 𝑖-th subfunction. Given a

variable 𝑧, the 𝑖-th subfunction is activated if 𝑧 ∈ (𝜂𝑖−1, 𝜂𝑖 ], denote
by 𝑠 (𝑧) = 𝑖 . Let 𝛼∗ = 𝛼𝑠 (𝑧) and 𝛽∗ = 𝛽𝑠 (𝑧) be the parameters of the

activated subfunction. We have ℓ (𝑧) = 𝛼∗𝑧 + 𝛽∗.
Let 𝜙𝑖, 𝑗 be the activation function of the neuron {𝑖, 𝑗}, which

represents the 𝑗-th neuron in 𝑖-th layer. Then, ℓ𝑖, 𝑗 is the approxima-

tion of 𝜙𝑖, 𝑗 . Let ℓ𝑖 = {ℓ𝑖,1, ℓ𝑖,2, . . . , ℓ𝑖,𝑚𝑖
} be the set of approximation

functions for 𝑖-th hidden layer,𝑚𝑖 is the width of 𝑖-th hidden layer.

The 𝑖-th layer of a LANN can be written as

ℎ′𝑖 (𝑧) = ℓ𝑖 (𝑉𝑖𝑧 + 𝑏𝑖 ) (4)

Then, a LANN is in the form of

𝑔(𝑥) = 𝑉𝑜ℎ′𝐿 (ℎ
′
𝐿−1 (. . . (ℎ

′
1
(𝑥)))) + 𝑏𝑜 (5)

Since the composition of piecewise linear functions is piecewise

linear, a LANN is a piecewise linear neural network. A linear region

of the piecewise linear neural network can be represented by the

activation pattern (this term follows the convention in [33]):

Definition 2 (Activation pattern). An activation pattern of a
piecewise linear neural network is the set of activation statuses of all
neurons, denoted by 𝑠 = {𝑠1,1, . . . , 𝑠1,𝑚1

, . . . , 𝑠𝐿,1, . . . , 𝑠𝐿,𝑚𝐿
}, where

𝑠𝑖, 𝑗 is the activation status of neuron {𝑖, 𝑗}.

Given an arbitrary input 𝑥 , the corresponding activation pattern

𝑠 (𝑥) is determined. With the fixed 𝑠 (𝑥), the transformation of ℓ𝑖 of

any layer 𝑖 is reduced to a linear transformation that can be written

in the following square matrix.

𝐿𝑖 =



𝛼∗
𝑖,1

0 . . . 0 𝛽∗
𝑖,1

0 𝛼∗
𝑖,2

. . . 0 𝛽∗
𝑖,2

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . 𝛼∗
𝑖,𝑚𝑖

𝛽∗
𝑖,𝑚𝑖

0 0 . . . 0 1


(6)

where 𝛼∗
𝑖, 𝑗

and 𝛽∗
𝑖, 𝑗

are the parameters of the activated subfunction

of neuron {𝑖, 𝑗}, and are determined by 𝑠𝑖, 𝑗 . The piecewise linear

neural network is reduced to a linear function 𝑦 =𝑊𝑥 + 𝑏 with[
𝑊 𝑏

]
=
[
𝑉𝑜 𝑏𝑜

] ∏
𝑖=𝐿,...,1

(
𝐿𝑖

[
𝑉𝑖 𝑏𝑖
0 1

] )
(7)

An activation pattern corresponds to a linear region of the piece-

wise linear neural network. Given two different activation patterns,

the square matrix 𝐿𝑖 of at least one layer are different, so are the cor-

responding linear functions. Thus, a linear region of the piecewise

linear neural network can be expressed by an unique activation

pattern. That is, the activation pattern 𝑠 (𝑥) represents the linear
region including 𝑥 .

4.2 Degree of Approximation
We measure the complexity of models with respect to approxima-

tion degree. We first define a measure of approximation degree

using approximation error. Then, we analyze approximation error

of LANN in terms of neuronal approximation functions.

Definition 3 (Approximation error). Let 𝑓 ′ : R→ R be an
approximation function of 𝑓 : R→ R. Given input 𝑥 , the approxima-
tion error of 𝑓 ′ at 𝑥 is 𝑒 (𝑥) = |𝑓 ′(𝑥) − 𝑓 (𝑥) |.

Given a deep neural network 𝑓 : R𝑑 → R𝑐 and a linear approx-
imation neural network 𝑔 : R𝑑 → R𝑐 learned from 𝑓 . We define
the approximation error of 𝑔 to 𝑓 as the expectation of the absolute
distance between their outputs:

E(𝑔; 𝑓 ) = E[ 1
𝑐

∑
|𝑔(𝑥) − 𝑓 (𝑥) | ] (8)

A LANN is learned by conducting piecewise linear approxima-

tion to every activation function. The approximation of every acti-

vation may produce an approximation error. The approximation

error of a LANN is the accumulation of all neurons’ approximation

errors.

In literature [11, 33], approximation error of activation is treated

as a small perturbation added to a neuron, and is observed to grow

exponentially through forward propagation. Based on this, we go a

step further to estimate the contribution of perturbation of every

neuron to the model output by analyzing error propagation.

Consider a target model 𝑓 and its LANN approximation 𝑔. Ac-

cording to Definition 3, the approximation error of ℓ𝑖, 𝑗 of 𝑔 corre-

sponding to neuron {𝑖, 𝑗} can be rewritten as 𝑒𝑖, 𝑗 = |ℓ𝑖, 𝑗 − 𝜙𝑖, 𝑗 |.
Suppose the same input instance is fed into 𝑓 and 𝑔 simultane-

ously. After the forward computation of the first 𝑖 hidden layers,

let 𝑟𝑖 be the output difference of the 𝑖-th hidden layer between 𝑔

and 𝑓 , and 𝑟𝑖−1 for the (𝑖 − 1)-th layer. Let 𝑥 denote the input to

the 𝑖-th layer, also the output of the (𝑖 − 1)-th layer of 𝑓 . We can

compute 𝑟𝑖 by

𝑟𝑖 = ℎ
′
𝑖 (𝑥 + 𝑟𝑖−1) − ℎ𝑖 (𝑥) (9)
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The absolute value of 𝑟𝑖 is

|𝑟𝑖 |= |ℎ′𝑖 (𝑥 + 𝑟𝑖−1) − ℎ𝑖 (𝑥) |
= |ℎ′𝑖 (𝑥 + 𝑟𝑖−1) − ℎ𝑖 (𝑥 + 𝑟𝑖−1) + ℎ𝑖 (𝑥 + 𝑟𝑖−1) − ℎ𝑖 (𝑥) |
≤ |ℎ′𝑖 (𝑥 + 𝑟𝑖−1) − ℎ𝑖 (𝑥 + 𝑟𝑖−1) | + |ℎ𝑖 (𝑥 + 𝑟𝑖−1) − ℎ𝑖 (𝑥) |

(10)

To keep the discussion simple, we write 𝑥𝑟 = 𝑥 +𝑟𝑖−1. The first term
of the righthand side of Eq. (10) is

|ℎ′𝑖 (𝑥𝑟 ) − ℎ𝑖 (𝑥𝑟 ) | = 𝑒𝑖 (𝑉𝑖𝑥𝑟 + 𝑏𝑖 ), (11)

where 𝑒𝑖 = [𝑒𝑖,1, 𝑒𝑖,2, . . . , 𝑒𝑖,𝑚𝑖
]𝑇 is a vector consisting of every

neuron’s approximation error of the 𝑖-th layer. Applying the first-

order Taylor expansion to the second term of Eq. (10), we have:

|ℎ𝑖 (𝑥 + 𝑟𝑖−1) − ℎ𝑖 (𝑥) | = |𝐽𝑖 (𝑥)𝑟𝑖−1 + 𝜖𝑖 | (12)

where 𝐽𝑖 (𝑥) = 𝑑ℎ𝑖 (𝑥)
𝑑𝑥

is the Jacobian matrix of the 𝑖-th hidden layer

of 𝑓 , 𝜖𝑖 is the remainder of the first-order Taylor approximation .

Plugging Eq. (11) and Eq. (12) into Eq. (10), we have:

|𝑟𝑖 | ≤ 𝑒𝑖 (𝑉𝑖𝑥𝑟 + 𝑏𝑖 ) + |𝐽𝑖 (𝑥)𝑟𝑖−1 | + |𝜖𝑖 | (13)

Assuming 𝑥 and 𝑟𝑖−1 being independent, the expectation of |𝑟𝑖 | is
E[|𝑟𝑖 |] ≤ E[𝑒𝑖 ] + E[|𝐽𝑖 |] E[|𝑟𝑖−1 |] + E[𝜖𝑖 ] (14)

where the error 𝜖𝑖 = 𝜖𝑖 + 𝜀𝑖 , where 𝜀𝑖 denotes the error in E[𝑒𝑖 ], in
other words, the disturbances of 𝑟𝑖−1 on the distribution of 𝑒𝑖 . Since

E[𝑒𝑖 ] is a vector where the elements correspond to the neurons in

the 𝑖-layer layer, the expectation of 𝑒𝑖, 𝑗 is

E[𝑒𝑖, 𝑗 ] =
∫

𝑒𝑖, 𝑗 (𝑥)𝑡𝑖, 𝑗 (𝑥)𝑑𝑥, (15)

where 𝑡𝑖, 𝑗 (𝑥) is probability density function (PDF) of neuron {𝑖, 𝑗}.
We notice that ℎ𝑖 (𝑥) consists of a linear transformation 𝑉𝑖𝑥 + 𝑏𝑖

followed by activation 𝜙 . Therefore, the Jacobian matrix can be

computed by 𝐽𝑖 (𝑥) = 𝜙 ′ ◦𝑉𝑖 . The 𝑗-th row of 𝐸 [|𝐽𝑖 |] is

E[|𝐽𝑖 |] 𝑗,∗ =
∫
|𝜙 ′(𝑥) |𝑡𝑖, 𝑗 (𝑥)𝑑𝑥 ◦ |𝑉𝑖 | 𝑗,∗ (16)

where the subscript 𝑗, ∗ means the 𝑗-th row of the matrix.

The above process describes the propagation of approximation

error through the 𝑖-th hidden layer. Applying the propagation cal-

culation recursively from the first hidden layer to the output layer,

we have the following result.

Theorem 1 (Approximation error propagation). Given a deep
neural network 𝑓 : R𝑑 → R𝑐 and a linear approximation neural
network 𝑔 : R𝑑 → R𝑐 learned from 𝑓 . The approximation error

E(𝑔; 𝑓 ) = 1

𝑐

∑
( |𝑉𝑜 | E[|𝑟𝐿 |]), (17)

where, for 𝑖 = 2, . . . , 𝐿,
E[|𝑟𝑖 |] ≤ E[𝑒𝑖 ] + E[|𝐽𝑖 |]E[|𝑟𝑖−1 |] + E[|𝜖𝑖 |] (18)

and E[|𝑟1 |] = E[𝑒1].

Based on Theorem 1, expanding Eq. (18), we have

E( |𝑟𝐿 |) ≈
𝐿∑
𝑖=1

𝑖+1∏
𝑞=𝐿

E[|𝐽𝑞 |] (E[𝑒𝑖 ] + E[|𝜖𝑖 |]) (19)

Plugging Eq. (19) into Eq. (17), the model approximation error

E(𝑔; 𝑓 ) can be rewritten in terms of 𝐸 [𝑒𝑖, 𝑗 ], that is,

E(𝑔; 𝑓 ) =
∑
𝑖,𝑗

1

𝑐

∑
( |𝑉𝑜 |

𝑖+1∏
𝑞=𝐿

E[ | 𝐽𝑞 | ] )∗, 𝑗︸                              ︷︷                              ︸
𝑤
(𝑒 )
𝑖,𝑗

(E[𝑒𝑖,𝑗 ] + E[ |𝜖𝑖,𝑗 | ]) (20)

here

∑(·)∗, 𝑗 sums up the 𝑗-th columns, 𝑤
(𝑒)
𝑖, 𝑗

is the amplification

coefficient of E[𝑒𝑖, 𝑗 ] reflecting its amplification in the subsequent

layers to influence the output, and is independent from the approxi-

mation of 𝑔 and is only determined by 𝑓 . When E(𝑔; 𝑓 ) is small and

the approximation of 𝑔 is very close to 𝑓 , the error 𝜖𝑖 can be ignored,

E(𝑔; 𝑓 ) is roughly considered a linear combination of E[𝑒𝑖, 𝑗 ] with
amplification coefficient𝑤

(𝑒)
𝑖, 𝑗

.

4.3 Approximation Algorithm
We use the LANN with the smallest number of linear regions that

meets the requirement of approximation degree, which measured

by approximation error E(𝑔; 𝑓 ), to assess the complexity of a model.

Unfortunately, the actual number of linear regions corresponding

to data manifold [4] in the input-space is unknown. To tackle the

challenge, we notice that a piecewise linear activation function

with 𝑘 subfunctions contributes 𝑘 − 1 hyperplanes to the input-

space partition [27]. Motivated by this, we propose to minimize

the number of hyperplanes under the expectation of minimizing

the number of linear regions. Formally, under a requirement of

approximation degree 𝜆, our algorithm learns a LANN model with

minimum 𝐾 (𝑔) = ∑
𝑖, 𝑗 𝑘𝑖, 𝑗 . Before presenting our algorithm, we

first introduce how we obtain the PDF 𝑡𝑖, 𝑗 of neuron {𝑖, 𝑗}.

4.3.1 Distribution of activation function. In Section 4.2, in or-

der to compute E[𝑒𝑖, 𝑗 ] and E[|𝐽𝑖 |], we introduce the probability
density function 𝑡𝑖, 𝑗 of neuron {𝑖, 𝑗}. To compute 𝑡𝑖, 𝑗 , the distribu-

tion of activation function is involved. The distribution of an acti-

vation function is how outputs (or inputs) of a neuronal activation

function distribute with respect to the data manifold. It is influenced

by the parameters of previous layers and the distribution of input

data. Since the common curve activation functions are bounded

to a small output range, to simplify the calculation, we study the

posterior distribution of an activation function [12, 20] instead of

the input distribution. To estimate the posterior distribution, we use

kernel density estimation (KDE) [34] with Gaussian kernel, and use

the output of activation function 𝜙𝑖, 𝑗 on training dateset as the dis-

tributed samples {𝑥1, 𝑥2, . . . , 𝑥𝑛}. we have 𝑡𝑖, 𝑗 = 1

𝑛ℎ

∑𝑛
𝑞=1 𝐾 (

𝑥−𝑥𝑞
ℎ
)

where the bandwidth ℎ is chosen by the rule-of-thumb estima-

tor [34]. To compute E[𝑒𝑖, 𝑗 ] and E[|𝐽𝑖 |], we uniformly sample

𝑛𝑡 points {Δ𝑥1, . . . ,Δ𝑥𝑛𝑡 } within the output range of 𝜙 , where

Δ𝑥𝑖 − Δ𝑥𝑖−1 = 𝜙 (∞)−𝜙 (−∞)
𝑛𝑡

. We then use the expectation on these

samples as an estimation of E[𝑒𝑖, 𝑗 ].

E[𝑒𝑖, 𝑗 ] ≈
𝑛𝑡∑
𝑞=1

𝑒𝑖, 𝑗 (Δ𝑥𝑞)𝑡𝑖, 𝑗 (Δ𝑥𝑞) (21)

The output of 𝜙 is smooth and in small range. Setting large sample

size 𝑛𝑡 does not lead to obvious improvement in the expectation

estimation. In our experiments, we set𝑛𝑡 = 200. Notice that 𝑥𝑞 is the

output of 𝜙 . The corresponding input is 𝜙−1 (𝑥𝑞). Thus, 𝑒𝑖, 𝑗 (𝑥𝑞) =
|ℓ𝑖, 𝑗 (𝜙−1 (Δ𝑥𝑞)) − Δ𝑥𝑞 |. E[|𝐽𝑖 |] is computed in the same way.

4.3.2 Piecewise linear approximation of activation. To min-

imize 𝐾 (𝑔), the piecewise linear approximation function ℓ𝑖, 𝑗 of an

arbitrary neuron {𝑖, 𝑗} is initialized with a linear function (𝑘 = 1).

Then every new subfunction is added to ℓ𝑖, 𝑗 to minimize the value
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Algorithm 1: nextTangentPoint
Input: 𝜙 , ℓ , 𝑡
Output: 𝑝∗, E[𝑒 ]−
begin
{Δ𝑥1, . . . ,Δ𝑥𝑛𝑡 } ← uniformly sampled points;

Compute E[𝑒 ] by Eq. (21);

for Δ𝑥 in {Δ𝑥1, . . . ,Δ𝑥𝑛𝑡 } do
ℓ′Δ𝑥 = add tangent line of Δ𝑥 to ℓ ;

Compute E[𝑒 (ℓ′Δ𝑥 ) ];
Δ𝑥∗ = argminΔ𝑥 E[𝑒 (ℓ′Δ𝑥 ) ];
E[𝑒 ]− = E[𝑒 ] − E[𝑒 (ℓ′Δ𝑥∗) ];

of E[𝑒𝑖, 𝑗 ]. Every subfunction is a tangent line of 𝜙 . The initializa-

tion is the tangent line at (0, 𝜙 (0)), which corresponds to the linear

regime of the activation function [20]. A new subfunction is added

to the next tangent point (𝑝∗, 𝜙 (𝑝∗)), which is found from the set

of uniformly sampled points {Δ𝑥1,Δ𝑥2, . . . ,Δ𝑥𝑛𝑡 }. That is,
𝑝∗𝑖, 𝑗 = 𝑎𝑟𝑔min

𝑝
E[𝑒𝑖, 𝑗 ]+𝑝 ; 𝑝 ∈ {Δ𝑥1, . . . ,Δ𝑥𝑛𝑡 } (22)

where subscript +𝑝 means that ℓ𝑖, 𝑗 with additional tangent line

of (𝑝, 𝜙 (𝑝)) is used in computing E[𝑒𝑖, 𝑗 ]. Algorithm 1 shows the

pseudocode of determining the next tangent point.

4.3.3 Building LANNs. To minimize 𝐾 (𝑔), the algorithm starts

with initializing every approximation function ℓ𝑖, 𝑗 with a linear

function (𝑘 = 1). Then, we iteratively add a subfunction to the

approximation function of a certain neuron to decrease E(𝑔; 𝑓 ) to
the most degree in each step.

In Eq. (20), when building a LANN, the error 𝜖𝑖 cannot be ig-

nored because E[𝑒𝑖, 𝑗 ] is large. The amplification coefficient 𝑤
(𝑒)
𝑖, 𝑗

of lower layer is exponentially larger than that of the upper layer.

Otherwise, error E[𝜖𝑖, 𝑗 ] grows exponentially from lower to upper

layer. Deriving this formula to get the exact weight of E[𝑒𝑖, 𝑗 ] is
complicated. A simple way is to roughly consider each E[𝑒𝑖, 𝑗 ] to
be equally important in the algorithm. Specifically, for a neuron

from the first layer, small E[𝑒𝑖, 𝑗 ] is desired due to a large magnitude

of 𝑤
(𝑒)
𝑖, 𝑗

even through E[𝜖𝑖, 𝑗 ] = 0. Another neuron from the last

hidden layer, its amplification coefficient 𝑤
(𝑒)
𝑖, 𝑗

is with the lowest

magnitude over all layers but E[𝜖𝑖, 𝑗 ] is not ignorable and may in-

fluence the distribution of neuron status, thus approximation with

small E[𝑒𝑖, 𝑗 ] is desired to decrease the value of E[𝑒𝑖, 𝑗 ] and E[𝜖𝑖, 𝑗 ].
Algorithm 2 outlines the LANN building algorithm. To reduce

the calculation times, we set up the batch size 𝑏 to batch processing

a group of neurons. The complexity of the algorithm (Algorithm 2)

is 𝑂 (𝐾 (𝑔)𝑛). The time cost of the first loop is 𝑂 ((∑𝐿
𝑖=1𝑚𝑖 ) ∗ 𝑛2𝑡 ).

The second loop repeats (𝐾 (𝑔) −∑𝐿
𝑖=1𝑚𝑖 ) times, within each loop

the computation cost is 𝑂 ((∑𝐿
𝑖=1𝑚𝑖 ) + 𝑛2𝑡 + 𝑛), where 𝑛𝑡 is the

sample size of 𝜙 , 𝑛 is the number of instances of 𝐷𝑡𝑟 .

5 MODEL COMPLEXITY
The number of linear regions in LANN reflects how nonlinear, or

how complex the function of the target model is. In this section,

we propose an upper bound to the number of linear regions, then

propose the model complexity measure based on the upper bound.

Algorithm 2: BuildingLANN
Input: a DNN 𝑓 (𝑥) with activation function 𝜙 ; training dataset

𝐷𝑡𝑟 ; a set of activation function distributions𝑇 = {𝑡𝑖,𝑗 };
batchsize 𝑏; approximation degree 𝜆

Output: a LANN model 𝑔

begin
Initialize ℓ𝑖,𝑗 in 𝑔 with linear functions;

for 𝑖 ← 1 to 𝐿 do
for 𝑗 ← 1 to𝑚𝑖 do

Compute E[𝑒𝑖,𝑗 ] by Eq.(21);

𝑝∗
𝑖,𝑗
, E[𝑒𝑖,𝑗 ]− ←nextTangentPoint(𝜙, ℓ𝑖,𝑗 , 𝑡𝑖,𝑗 ) ;

repeat
𝑁𝑢 = select 𝑏 neurons with maximum 𝐸 [𝑒𝑖,𝑗 ]−;
for every neuron 𝑢 ∈ 𝑁𝑢 do

ℓ𝑢 ← add tangent line of 𝑝∗𝑢 to ℓ𝑢 ;

E[𝑒𝑢 ] = E[𝑒𝑢 ] − E[𝑒𝑢 ]−;
𝑝∗𝑢 ,E[𝑒𝑢 ]− ←nextTangentPoint(𝜙, ℓ𝑖,𝑗 , 𝑡𝑖,𝑗 ) ;

E(𝑔; 𝑓 ) ← approximation error on 𝐷𝑡𝑟 ;

until E(𝑔; 𝑓 ) ≤ 𝜆;

The idea of measuring model complexity using the number of lin-

ear regions is common in piecewise linear neural networks [27, 29,

31, 33]. We generalize their results to the LANNmodel, of which the

major difference is that, in LANN, each piecewise linear activation

function has different form and different number of subfunctions.

Theorem 2 (Upper bound). Given a linear approximation neural
network 𝑔 : R𝑑 → R𝑐 with 𝐿 hidden layers. Let𝑚𝑖 be the width of
the 𝑖-th layer and 𝑘𝑖, 𝑗 the number of subfunctions of ℓ𝑖, 𝑗 . The number
of linear regions of 𝑔 is upper bounded by

∏𝐿
𝑖=1 (

∑𝑚𝑖

𝑗=1
𝑘𝑖, 𝑗 −𝑚𝑖 + 1)𝑑 .

Please see Appendix A.1 for the proof of Theorem 2. This the-

orem indicates that the number of linear regions is polynomial

with respect to layer width and exponential with respect to layer

depth. This is consistent with the previous studies on the power

of neural networks [2, 3, 11, 32]. Meanwhile, the value of 𝑘 re-

flects the nonlinearity of the corresponding neuron according to

the status distribution of activation functions. The distribution is

influenced by both model parameters and data manifold. Thus, this

upper bound reflects the impact of model parameters on complexity.

Based on this upper bound, we define the complexity measure.

Definition 4 (Complexity measure). Given a deep neural net-
work 𝑓 and a linear approximation neural network 𝑔 learned from 𝑓 with
approximation degree 𝜆, the 𝜆-approximation complexity measure of 𝑓 is

𝐶 (𝑓 )𝜆 = 𝑑

𝐿∑
𝑖=1

log(
𝑚𝑖∑
𝑗=1

𝑘𝑖,𝑗 −𝑚𝑖 + 1) (23)

This complexity measure is essentially a simplification of our pro-

posed upper bound by logarithm. We recommend to select 𝜆 from

the range of E when
(E′)2
E′′ converges to a constant. (Appendix A.2)

6 INSIGHT FROM COMPLEXITY
In this section, we take several empirical studies to shed more in-

sights on the complexity measure. First, we investigate various

contributions of hidden neurons to model stability. Then, we exam-

ine the changing trend of model complexity in the training process.
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Table 1: Model structure of DNNs in our experiments.

Sec 6.1 Sec 6.2 Sec 6.3, 6.4

MOON - - L3M(32,128,16)𝑇

MNIST L3M300𝑆 L3M100𝑇 , L6M100𝑇 , L3M200𝑇 -

CIFAR L3M300𝑇 L3M200𝑇 , L6M200𝑇 , L3M400𝑇 L3M(768,256,128)𝑇
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Figure 3: Amplification coefficient of every neuron.
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Figure 4: Layerwise error accumulation (𝜆 = 0.1).

After that, we study the occurrence of overfitting and 𝐿1 and 𝐿2

regularizations. Finally, we propose two new simple and effective

approaches to prevent overfitting.

Our experiments and evaluations are conducted on both syn-

thetic (Two-Moons
1
) and real-world datasets (MNIST [24], CIFAR-

10 [23]). To demonstrate that the reliability of the complexity mea-

sure does not depend on model structures, we design multiple

model structures. We use 𝜆 = 0.1 for complexity measure in all

experiments, which sits in our suggested range for all models we

used. Table 1 summarizes the model structures we used, where L3

indicates the network is with 3 hidden layers, M300 means each

layer contains 300 neurons while M(32,128,16) means that the first,

second, and third layers contain 32, 128, and 16 neurons, respec-

tively. Subscripts 𝑆 and𝑇 stand for the activation functions Sigmoid

and Tanh, respectively.

6.1 Hidden Neurons and Stability
As discussed in Section 4.2, the amplification coefficient

𝑤
(𝑒)
𝑖, 𝑗

(Eq. 20) is defined by the multiplication of E[𝐽𝑝 ] through
subsequent layers. 𝑤

(𝑒)
𝑖, 𝑗

measures the magnification effect of the

perturbation on neuron {𝑖, 𝑗} in subsequent layers. In other words,

the amplification coefficient reflect the effect of a neuron on model

stability. Figure 3 visualizes amplification coefficients of trained

models on the MNIST and CIFAR datasets, showing that neurons

from the lower layers have greater amplification factors. To exclude

the influence of variant layer widths, each layer of the models has

the equal width.

1
The synthetic dataset is generated by sklearn.datasets.make_moons API.
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Figure 5: Percentage of flipped prediction labels after ran-
dom neuron ablation.
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Figure 6: Changing trend of complexity measure in training
process of three models on MNIST dataset.

Besides amplification coefficient, we also visualize E[𝑟𝑖 ], the
error accumulation of all previous layers. According to our analysis,

E[𝑟𝑖 ] is expected to have the opposite trend with 𝑤
(𝑒)
𝑖, 𝑗

: E[𝑟 ] of
upper layers is expected to be exponentially larger than lower layers.

Figure 4 shows error accumulation E[𝑟𝑖 ] on the same models.

To verify that a small perturbation at a lower layer can cause

greater influence on the model outputs than at a upper layer, we ran-

domly ablate neurons (i.e., fixing the neuron output to 0) from one

layer of a well-trained model and observe the number of instances

whose prediction labels are consequently flipped. The results of

ablating different layers are shown in Figure 5.

6.2 Complexity in Training
In this experiment, we investigate the trend of changes in model

complexity in the training process. Figure 6 shows the periodically-

recorded model complexity measure during training based on the

0.1-approximation complexity measure 𝐶 (𝑓 )0.1. From this figure,

we can observe the soaring model complexity along with the train-

ing, which indicates that the learned deep neural networks become

increasingly complicated. Figure 6 sheds light on how the model

structure influences the complexity measure. Particularly, it is clear

to see that increases in both width and depth can increase the

model complexity. Furthermore, with the same number of neurons,

the complexity of a deep and narrow model (L6M100𝑇 on MNIST,

L6M200𝑇 on CIFAR) is much higher than a shallow and wide one

(L3M200𝑇 on MNIST, L3M400𝑇 on CIFAR). This agrees with the

existing studies on the effectiveness of width and depth of DNNs

[2, 11, 27, 31].

6.3 Overfitting and Complexity
The complexity measure through LANNs can be used to understand

overfitting. Overfitting usually occurs when training a model that
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Figure 7: Decision boundaries of models trained on MOON
dataset. NM, L1, L2 are short for normal train, train with
𝐿1, 𝐿2 regularization respectively. In brakets are the value
of complexity measure 𝐶 (𝑓 )0.1.
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Figure 8: Complexity measure during training of CIFAR
dataset. Weight penalties are 1𝑒 − 4 and 1𝑒 − 3 for 𝐿1 and 𝐿2

regularizations, respectively.

is unnecessarily flexible [16]. Due to the high flexibility and strong

ability to accommodate curvilinear relationships, deep neural net-

works suffer from overfitting if they are learned by maximizing the

performance on the training set rather than discovering the patterns

which can be generalized to new data [15]. Previous studies [16]

show that an overfitting model is more complex than not overfitting

ones. This idea is intuitively demonstrated by the polynomial fit

example in Figure 1(b).

Regularization is an effective approach to prevent overfitting, by

adding regularizer to the loss function, especially 𝐿1 and 𝐿2 reg-

ularization [15]. 𝐿1 regularization results in a more sparse model,

and 𝐿2 regularization results in a model with small weight parame-

ters. A natural hypothesis is that these regularization approaches

can succeed in restricting the model complexity. To verify this, we

train deep models on the MOON dataset with and without regu-

larization. After 2,000 training epochs, their decision boundaries

and complexity measure 𝐶 (𝑓 )0.1 are shown in Figure 7. The re-

sults demonstrate the effectiveness of 𝐿1 and 𝐿2 regularizations

in preventing overfitting and constraining increase of the model

complexity.

We also measure model complexity during the training process,

after each epoch of CIFAR, with or without 𝐿1 and 𝐿2 regulariza-

tions. The results are shown in Figure 8. Figure 8(a) is the overfitting

degree measured by (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑟𝑎𝑖𝑛 −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑒𝑠𝑡 ), Figure 8(b) is
the corresponding complexity measure 𝐶 (𝑓 )0.1. The results verify
the conjecture that 𝐿1 𝑎𝑛𝑑 𝐿2 regularizations constrain the increase

of model complexity.

6.4 New Approaches for Preventing Overfitting
Motivated by the well-observed significant correlation between the

occurrence of overfitting and the increasing model complexity, we

Table 2: Complexity measure and number of linear regions
of MOON.

NM PR C-L1 L1 L2

𝐶 (𝑓 )0.1 34.24 25.98 25.70 26.22 26.91

# Regions 73,423 835 802 1,052 1,235

NM (34.24) PR (25.98) C-L1 (25.70) L1 (26.22) L2 (26.91)

Figure 9: Decision boundaries of models trained with differ-
ent regularization methods on MOON dataset. PR, C-L1 are
short for training with neuron prunning, with customized
𝐿1 regularization.

propose two approaches to prevent overfitting by directly suppress-

ing the rising trend of the model complexity during training.

6.4.1 Neuron Pruning. From the definition of complexity (Def. 4),

we know that constrainingmodel complexity𝐶 (𝑓 )𝜆 , i.e., restraining
the variable 𝑘𝑖, 𝑗 for each neuron, is equivalent to constraining

the non-linearity of the distribution of a neuron. Thus, we can

periodically prune neurons with a maximum value of E[|𝑡 |], after
each training epoch. This is inspired by the fact that a larger value

of E[𝑡] implies the higher probability that the distribution 𝑡 is

located at the nonlinear range and therefore requires a larger 𝑘 .

Pruning neurons with a potentially large degree of non-linearity

can effectively suppress the rising of model complexity. At the same

time, pruning a limited number of neurons unlikely significantly

decreases the model performance. Practical results demonstrate

that this approach, though simple, is quite efficient and effective.

6.4.2 Customized 𝐿1 Regularization. This is to give customized

coefficient to every column of weight matrix 𝑉𝑖 (𝑖 = 1, . . . , 𝐿) when
doing 𝐿1 regularization. Each column corresponds to a specific

neuron and with coefficient:

𝑎𝑖, 𝑗 = E[|𝜙 ′𝑖, 𝑗 |] =
∫
|𝜙 ′(𝑥) |𝑡𝑖, 𝑗 (𝑥)𝑑𝑥 (24)

One explanation is that 𝑎𝑖, 𝑗 equals to the expectation of first-order

derivative of 𝜙𝑖, 𝑗 . With a larger value of E[|𝜙 ′
𝑖, 𝑗
|], the distribu-

tion 𝑡𝑖, 𝑗 is with a higher probability located at the linear range of

the activation function (0 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝜙
′(𝑥)). The customized 𝐿1

approach assigns larger sparse penalty weights to more linearly

distributed neurons. The neurons with more nonlinear distributions

can maintain their expressive power. Another view to understand

this approach is to using Eq. (19), 𝑎𝑖,∗ |𝑉𝑖 | = E[|𝐽𝑖 |]. That is, the
formulation of customized 𝐿1 can be interpreted as the constraint

of 𝐸 [|𝐽 |], which will obviously result in smaller E(𝑔; 𝑓 ) as well as
smaller 𝐶 (𝑓 ). Customized 𝐿1 is more flexible than the normal 𝐿1

regularization, thus behaves better with large penalty weight.

Figure 9 compares the respective decision boundaries of the mod-

els trained with different regularization approaches on the MOON

dataset. Table 2 records the corresponding complexity measure and
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Figure 10: Degree of overfitting and complexity measure in
training process of CIFAR dataset.

the number of split linear regions over the input space. Figure 10

shows the overfitting and complexity measures in the training pro-

cess of models on CIFAR. In our experiments, the neuron pruning

percentage set to 5%. These figures demonstrate that neuron prun-

ing can constrain overfitting and model complexity, and still retain

satisfactory model performance. We scale the customized 𝐿1 co-

efficient 𝑎𝑖, 𝑗 to
𝑎𝐿1
E[𝑎𝑖,𝑗 ] 𝑎𝑖, 𝑗 so that its mean value is equal to the

penalty weight of 𝐿1, denoted by 𝑎𝐿1. Our results shows that, with

a small penalty weight, the customized 𝐿1 approach behaves close

to normal 𝐿1. With a large penalty weight, the performance of 𝐿1

model is affected, test accuracy decrease by 3%. The customized 𝐿1

approach retains the performance (Appendix A.3).

7 CONCLUSION
In this paper, we develope a complexity measure for deep neural

networks with curve activation functions. Particularly, we first

propose the linear approximation neural network (LANN), a piece-

wise linear framework, to both approximate a given DNN model

to a required approximation degree and minimize the number of

resulting linear regions. After providing an upper bound to the num-

ber of linear regions formed by LANNs, we define the complexity

measure facilitated by the upper bound. To examine the effective-

ness of the complexity measure, we conduct empirical analysis,

which demonstrated the positive correlation between the occur-

rence of overfitting and the growth of model complexity during

training. In the view of our complexity measure, further analysis

revealed that 𝐿1, 𝐿2 regularizations indeed suppress the increase of

model complexity. Based on this discovery, we finally proposed two

approaches to prevent overfitting through directly constraining

model complexity: neuron pruning and customized 𝐿1 regulariza-

tion. There are several future directions, including generalizing

the usage of our proposed linear approximation neural network to

other network architectures (i.e. CNN, RNN).
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A PROOF AND DISCUSSIONS
A.1 Proof of Theorem 2

Proof. First of all, according to [27, 31, 33], the total number of

linear regions divided by 𝑘 hyperplanes in the input space R𝑑 is

upper bounded by

∑𝑑
𝑖=0

(𝑘
𝑖

)
, whose upper bound can be obtained

using binomial theorem:

𝑑∑
𝑖=0

(𝑘
𝑖

)
≤ (𝑘 + 1)𝑑 (25)

.

Now consider the first hidden layer ℎ′
1
of a LANN model. A

piecewise linear function consisting of 𝑘𝑖, 𝑗 subfunctions contributes

𝑘𝑖, 𝑗 − 1 hyperplanes to the input space splitting. The first layer ℎ′
1

contains𝑚1 neurons, with 𝑗-th neuron consisting of 𝑘1, 𝑗 subfunc-

tions. So ℎ′
1
contributes

∑𝑚1

𝑗=1
(𝑘1, 𝑗 − 1) hyperplanes to the input

space R𝑑 splitting, and divides R𝑑 into linear regions with upper

bound (Eq. 25):

(
𝑚1∑
𝑗=1

𝑘1, 𝑗 −𝑚1 + 1)𝑑 (26)

Now move to the second hidden layer ℎ′
2
. For each linear region

divided by the first layer, it can be divided by the hyperplanes of

ℎ′
2
to at most (

∑𝑚2

𝑗=1
𝑘2, 𝑗 −𝑚2 + 1)𝑑 smaller regions.

Thus, the total number of linear regions generated by ℎ′
1
, ℎ′

2
is

at most

(
𝑚1∑
𝑗=1

𝑘1, 𝑗 −𝑚1 + 1)𝑑 ∗ (
𝑚2∑
𝑗=1

𝑘2, 𝑗 −𝑚2 + 1)𝑑 (27)

.

Recursively do this calculation until the last hidden layer ℎ′
𝐿
.

Finally, the number of linear regions divided by 𝑔 is at most

𝐿∏
𝑖=1

(
𝑚𝑖∑
𝑗=1

𝑘𝑖, 𝑗 −𝑚𝑖 + 1)𝑑 (28)

□

A.2 Suggested Range of 𝜆
In this section we provide a suggestion of the range of 𝜆 when

using LANN for complexity measure. A suitable value of 𝜆 makes

the complexity measure trustworthy and stable. When the value

of 𝜆 is large, the measure may be unstable and unable to reflect

the real complexity. It seems small value of 𝜆 is prefered, however

small value calls for higher cost to construct the LANN approxima-

tion. And how small should 𝜆 be? Based on analyzing the curve of

approximation error, we provide an empeircal range.

We first analyze the curve of approximation error in several as-

pects. Approximation error E is the optimization object in building

LANN algorithm (Algorithm 2), so obviously it goes decreasing

during training epochs (Figure 11(a)). Meanwhile, the absolute of

first-order derivative of E, which represents the contribution of

current epoch’s operation to the decrease of apporixmation error

E, is called approximation gain here, and denoted by 𝑘 . Our algo-

rithm ensures that, at any time 𝑘 is expected to be larger than all

remaining possible operations. Figure 11(b) shows the curve of

approximation gain. Because we ignore the error 𝜖 in the algorithm,

the curve of approximation gain in practice has a small range of

jitter, but the decreasing trend can be guaranteed. We also consider

the derivative of 𝑘 , formally the absolute of second-order derivative

of approximation error E, denoted by 𝑎. The second-order deriva-

tive 𝑎 reflects the changing trend of the approximation gain 𝑘 . It is

easy to prove that, the trend of 𝑎 goes decrease with training epoch

increases: If not, after a finite number of epochs we have 𝑘 = 0. But

in fact, since E will never decrease to 0, operation of each epoch

brings non-zero influence to E, thus 𝑘 will not be 0. Figure 11(c)

shows the change trend of 𝑎.

See from Figure 11, the changing trends of E, 𝑘 and 𝑎 are close to

each other. The trend decreases quickly at the beginning then grad-

ually flatten to convergence. This agrees with our algorithm design.

After E goes flatten, the following relationships are established:

𝑘 → 0, 𝑎 → 0, 𝑘 ≠ 0, 𝑎 ≠ 0, 𝑎 << 𝑘 .

(a) Approximation error E (b) Approximation gain 𝑘

(c) Second-order derivative 𝑎 (d) 𝑘2/𝑎

Figure 11: Changing trend of approximation error E, approx-
imation gain 𝑘 , 𝑎 which is the second-order derivative of E,
and 𝑘2/𝑎 computed from 𝑘 and 𝑎.

(a) Approximation error E (b) Approximation gain 𝑘

(c) Second-order derivative 𝑎 (d) 𝑘2/𝑎

Figure 12: Changing trend of approximation error E, approx-
imation gain 𝑘 , 𝑎 which is the second-order derivative of E,
and 𝑘2/𝑎 computed from 𝑘 and 𝑎. Here we enlarge second
half, after 100 epoches of Figure 11.

Suppose there is an epoch 𝑡0 in the flatten region of E, 𝑘, 𝑎 are
its first-order, second-order derivative. We show changing trends

of flatten regions in Figure 12. According to Figure 11 and the

above analysis, the curve after 𝑡0 is basically stable. We estimate the
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Figure 13: Verify the rationality of 𝜆 = 0.1 for three models
trained on CIFAR: L3M200𝑇 , L6M200𝑇 , L3M400𝑇 . Left figure
shows the curve of approximation errors of three models.
Right figure shows the value𝑘2/𝑎 in the area nearby 0.1. Here
𝑥 axis is the corresponding approximation error.

total gain of approximation error that can be brought by remaining

epochs. Suppose there exists a𝑛 that after𝑛 epochs from 𝑡0, 𝑘 goes 0.

Then the gain of remaining epochs are the gain of the next 𝑛 epochs.

Suppose 𝑎 is constant, 𝑛 = 𝑘/𝑎. the gain of remaining epochs is

estimated by 𝑘𝑛 − 𝑎𝑛2/2 = 𝑘2/2𝑎.
We analyze 𝑘 and 𝑎 from the view of the remaining gain estima-

tion. In practice, 𝑘 and 𝑎 keep decrease. If 𝑘 and 𝑎 goes stable and

with very close decreasing trend, the estimation of remaining gain

of 𝑡0 should be close to the estimation of epochs around 𝑡0. Suppose

the above condition is true, we have: 𝑘2/𝑎 ≈ (𝑘 + 𝑎)2/(𝑎 + 𝑎′) ⇒
𝑘/𝑎 ≈ 𝑎/𝑎′, where 𝑎′ is the derivative of 𝑎. This is, the downward
trend of 𝑘 and 𝑎 are basically similar, and 𝑎′ << 𝑎 << 𝑘 << 1 is

true.

As a result, 𝑘2/𝑎 of an epoch almost equalling to the calculated

value of its neighbors demonstrates that, the derivative of 𝑘 and 𝑎

are almost the same. The gain of remaining epoches are expected

to be relatively stable, each afterward epoch will not bring much

influence to the value of E. In this case, the E is relatively stable.

The conclusion is, for the construction of a LANN based on a

specific target model, 𝜆 < 𝜆0 is suggested where 𝜆0 is the starting

point of 𝑘2/𝑎 converging to a constant.

For the comparable of two LANNs, find such 𝜆 which satisfy-

ing 𝜆 < 𝑚𝑖𝑛(𝜆0,𝑎, 𝜆0,𝑏 ) and 𝑘𝑎 (𝜆) ≈ 𝑘𝑏 (𝜆). This to some degree

ensures the stability of complexity measure of the target model,

the estimated gain of remaining epochs of two LANNs are almost

similar.

In practical experiments, the value of 𝑘2/𝑎 is used to check if the
value of 𝜆 is reasonable. In our experiments, we choose a uniform

𝜆 = 0.1 and verify its rationality. From our experimental results,

it seems for relatively simple network (e.g. 3 layers, hundreds of

width), 𝜆 ≤ 0.12 is good enough since the 𝑘2/𝑎 goes convergence. In

Figure 13 we show the changing trends on the CIFAR to demontrate

that 𝜆 = 0.1 is a reasonable value in our experiments.

A.3 More Experimental Results
A.3.1 Extension of Section 6.4. In Section 6.4, we report that cus-

tomized 𝐿1 regularization is more flexible than normal 𝐿1 regular-

ization, such that behaves better with large weight penalty. We

indicate that customized 𝐿1 maintains the prediction performance

on the CIFAR test dataset while 𝐿1 is about 3% lower. Below in Fig-

ure 14 we show the corresponding prediction accuracy on training

and test dataset.

A.3.2 Complexity Measure is Data Insensitive. To verify if our com-

plexity measure by LANN is data sensitive, we measure the approxi-

mation error of LANNs on test dataset. Below in Table 3 we compare

approximation errors on training dataset (the dataset used to build

LANNs) and test dataset. The results show that LANNs achieve

very close approximation error on training and test dataset, which

demonstrates that our complexity measure is data dependence but

data insensitive.

0 10 20 30 40 50
Epoch

0.25

0.50

0.75

1.00

Ac
c t
r

NM L13e−4 CL3e−4

0 10 20 30 40 50
Epoch

0.2

0.4

Ac
c t
e

NM L13e−4 CL3e−4

Figure 14: Left shows the accuracy on the CIFAR training
dataset, the right one shows the accuracy on the CIFAR test
dataset. Both in the training process.

Table 3: Compare approximation error on training dataset
and test dataset.

Dataset Model E𝑡𝑟𝑎𝑖𝑛 E𝑡𝑒𝑠𝑡
MNIST L3M100𝑇 0.0999 0.0988

MNIST L6M100𝑇 0.0979 0.0971

MNIST L3M200𝑇 0.0911 0.0907

MNIST L3M300𝑆 0.0944 0.0942

CIFAR L3M300𝑇 0.0989 0.0977

CIFAR L3M200𝑇 0.0979 0.0984

CIFAR L6M200𝑇 0.0973 0.0970

CIFAR L3M400𝑇 0.0984 0.0976

CIFAR L3M(768,256,128)𝑇 0.0970 0.0979
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