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Machine Learning Models and Complexity

How complicated problems
can a given model express?

[ Model

How much does a give model Data
learns from a given data set?

Problem
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Example-1: Model Complexity of Decision Trees

depth of a tree



Example-2: Complexity of Logistic Regression

* Vapnik-Chervonenicks theory
 Rademacher complexity
* Fisher Information matrix

 The razor of model

* A theoretical index of the complexity of a parametric family of models

comparing to the true distribution



Deep Learning Models Are Unique

* Large size
* Large number of parameters

* Much higher complexity than traditional machine learning models



What is Deep Learning Model Complexity?

capacity of container
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If we informally regard a deep learning model as a “container”.



What is Deep Learning Model Complexity?
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Deep Learning Model Complexity

* Expressive Capacity: the capacity of deep learning models in

approximating complex problems

* Effective Complexity: the (practical, usable) complexity of the

functions represented by deep models with specific parameterization

* Example
* Function f(x) = ax* + bx + ¢
e Expressive capacity: unary quadratic

* Effective complexity when a = 0 : linear
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What is Deep Learning Model Complexity?

* In the hypothesis space H that corresponds to a fixed deep learning

model structure

* Effective Complexity

* the complexity EMC(h) of a specific hypothesis h (h€H)

* Expressive Capacity

e describes the upper bound of the complexity of any model in H, that is,
sup{EMC(h):heH}
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Why Deep Learning Model Complexity?

* Understand the capability and limitation of deep learning models

* Investigate many other related fundamental questions

* Generalization error and generalization capability
* Overfitting

* Model optimization and regularization
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Deep Learning Model Complexity: Factors

* Model framework
 Model type: FCNN, CNN, RNN, ResNet ...
e Activation function: Tanh, RelU ...

e Model size

 Number of hidden layers, width of each layer, number of filters, number of trainable
parameters, ...

* Optimization process

* The form of objective functions, optimization algorithms, hyperparameters, ...

* Data complexity

e Data dimensionality, number of class labels, data distribution, ...
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Model-Specific vs. Cross-Model Methods

* Model-specific: study complexity of a certain type of model

* Deep neural networks with RelLU activation [Raghu et al., 2017]

* Deep neural networks with smooth curve activation [Hu et al., 2020]

* Cross-model: cover and compare multiple types of models

* CNNs and RNNs [Khrulkov et al., 2018]
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Measure-based vs. Reduction-based Methods

* Measure-based: define an appropriate quantitative representation of

model complexity

 Number of linear regions of ReLU networks

[Raghu et al., 2017; Hanin and Rolnick, 2019; Hu et al., 2020]

* Reduction-base: reduce deep learning models to some known

problems and functions

e Connect neural networks to Tensor decompositions [Khrulkov et al., 2018]
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Outline of This Tutorial

* Part I: Deep Learning Model Complexity (Jian Pei)

 Part II: Expressive Capacity (Lingyang Chu)
* Part Ill: Effective Complexity (Xia Hu)

* Part IV: Application Examples (Jiang Bian)
* Part V: Conclusion (Weiqing Liu)
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